题目描述:
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
获取数据 get(key) - 如果关键字 (key) 存在于缓存中,则获取关键字的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字/值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
请在 O(1) 时间复杂度内完成这两种操作。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lru-cache
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解答:
方法一:(来自LeetCode官方题解)
使用自带的LinkedHashMap,可以直接模拟LRU。
LinkedHashMap的数据结构是在HashMap的基础上,为每个HashMap节点都增加了两个属性before、after,并用双链表把每个节点连接起来,before、after分别代表某元素在双链表的前一个、后一个元素。
详细可参考Java集合详解5:深入理解LinkedHashMap和LRU缓存
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
| import java.util.LinkedHashMap;
class LRUCache extends LinkedHashMap { int capacity;
LRUCache(int capacity) {
super(capacity, 0.75F, true); this.capacity = capacity; }
public int get(int key) { return super.getOrDefault(key, -1); }
public void put(int key, int value) { super.put(key, value); }
@Override protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) { return size() > capacity; } }
|
方法二:
哈希表+双向链表方式构造LRU。
HashMap用来定位某元素在节点中的位置,映射关系是,(HashMap).get(key)直接拿到节点。
双向链表模拟LRU缓存,头部位置代表最近访问过的,尾部表示最久未使用的。原因:访问过的都往头部转移,那些不常访问的元素就会越来越往后移动。 这个哪一端是刚刚访问的,随你心情定义,你也可以定义尾部就是刚刚访问的,而头部是最久未使用的。
get(int key)的逻辑:寻找某元素时,找不到就返回-1,找得到就返回value,并把该元素移动到头部,代表最近访问了,久而久之,尾部就会使最久未使用的元素。
put(int key, int value)的逻辑是,如果不是新元素,就更新该元素value(同时意味着该元素要移动到开头,可以利用get(key)判断是否是新元素,若元素已存在就会移动到开头,然后更新开头元素value);如果是新元素,容量足够就加到头部,代表刚刚访问;容量不够,就得移除尾部节点,再在头部节点添加元素。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
| import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Stack;
class ListNode { int key; int value; ListNode before; ListNode after;
ListNode(int key, int value) { this.key = key; this.value = value; } }
class LRUCache { int capacity; ListNode head; ListNode tail; Map<Integer, ListNode> map;
LRUCache(int capacity) { this.capacity = capacity; head = new ListNode(-1, -1); tail = new ListNode(-1, -1); head.after = tail; tail.before = head; map = new HashMap<>(); }
public synchronized int get(int key) { if (capacity == 0) return -1; ListNode vn = map.get(key); if (vn == null) return -1; if (vn.before == head) return vn.value; removeNode(vn); addToHead(vn); return vn.value; }
public synchronized void put(int key, int value) { if (capacity == 0) return; int v = get(key); if (v != -1) { head.after.value = value; return; } ListNode newNode = new ListNode(key, value);
if (map.size() + 1 <= capacity) { addToHead(newNode); map.put(key, newNode); return; } map.remove(tail.before.key); map.put(key, newNode); removeNode(tail.before); addToHead(newNode); }
private synchronized void removeNode(ListNode node) { node.before.after = node.after; node.after.before = node.before; }
private synchronized void addToHead(ListNode vn) { ListNode first = head.after; head.after = vn; vn.before = head; vn.after = first; first.before = vn; } }
|
完毕。
LRU缓存这道题常见于字节跳动的面试题,这里同时分享一个字节跳动面试常考算法题,来自LeetCode.
LeetCode探索之字节跳动